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Pain is an elemental inducer of avoidance. Here, we demonstrate
that people differ in how they learn to avoid pain, with some
individuals refraining from actions that resulted in painful out-
comes, whereas others favor actions that helped prevent pain.
These individual biases were best explained by differences in
learning from outcome prediction errors and were associated with
distinct forms of striatal responses to painful outcomes. Specifically,
striatal responses to pain were modulated in a manner consistent
with an aversive prediction error in individuals who learned pre-
dominantly from pain, whereas in individuals who learned pre-
dominantly from success in preventing pain, modulation was
consistent with an appetitive prediction error. In contrast, striatal
responses to success in preventing pain were consistent with an
appetitive prediction error in both groups. Furthermore, variation in
striatal structure, encompassing the region where pain prediction
errors were expressed, predicted participants’ predominant mode of
learning, suggesting the observed learning biases may reflect stable
individual traits. These results reveal functional and structural neu-
ral components underlying individual differences in avoidance
learning, which may be important contributors to psychiatric disor-
ders involving pathological harm avoidance behavior.
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Pain conveys vital feedback on our actions, informing us
whether an action compromises our safety and should be

avoided. However, learning what to avoid doing, rather than
what to do, could lead to maladaptive passive risk-avoidant be-
havior. For instance, when learning to ski, an overreaction to a
painful fall could render a person overly cautious and hinder
progress in skill acquisition. Likewise, failed investments might lead
to an overconservative passive financial strategy, whereas social
rejection might engender reclusive behavior. In some individuals,
such as those with avoidant personality disorders, refraining too
much from potentially harmful actions can manifest as a stable
personality trait (1).
However, an opposite tendency, to learn predominantly from

successful actions that helped avoid harm, might lead to mal-
adaptive active behavior. Thus, in soccer, sporadic success in
preventing goals by diving to the left or right before seeing where
a penalty kick is heading is sufficient for goalkeepers to over-
whelmingly prefer this suboptimal active strategy, when in fact
the optimal strategy is to passively stay put (2). In the extreme,
excessive repetitive activity so as to avoid harm may constitute
compulsivity, a debilitating feature of obsessive-compulsive dis-
order (3).
Complementing previous studies of learning about abstract

outcomes (4, 5), we investigated individual biases in learning to
avoid pain. To this end, we used a novel gambling task that
probes how participants adjust their choices in response to
painful electrical shocks and, additionally, how they adjust their
choices in response to success in preventing shocks. In line with
studies of reward learning (6–9), learning in our task was best
explained as driven by an outcome prediction error that reflects

the difference between expected and actual outcomes. Consis-
tent with the expression of such a teaching signal, blood-oxygen
level-dependent (BOLD) responses to outcomes in the striatum
were modulated by expectation. However, striatal response to
shocks were qualitatively different in negative learners (i.e., those
who predominantly learned from shocks) compared with positive
learners (i.e., those who predominantly learned from success in
avoiding shocks). Specifically, striatal activity was consistent with
an aversive prediction error signal in negative learners and with an
appetitive prediction error signal in positive learners. The degree
to which a participant tended to learn from success in avoiding
than experiencing shocks was predicted by the structure of a
participants’ striatum, specifically by higher gray matter density
where the response to shocks was consistent with a prediction
error signal.

Results
Individual Biases in Learning from Pain and Its Prevention. To test for
individual differences in learning to avoid pain, we tasked 41
participants to play a card game in which their goal was to
minimize the number of painful electrical shocks they might
receive. Participants could avoid shocks by gambling that the
number they were about to draw will be higher than the number
the computer had drawn. An unsuccessful gamble resulted in
shock and a successful gamble led to its avoidance. Alternatively,
participants could always decline the gamble and opt for a fixed
50% known probability of receiving a shock (Fig. 1A). Impor-
tantly, participants played with three different decks of cards and
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had to learn by trial and error how likely a gamble was to be
successful with each deck.
In principle, participants can acquire information about the

decks from both successful and unsuccessful gambles. Indeed, we
observed from their behavior that as they gained experience with
the three decks, their willingness to gamble with each deck dif-
fered (Fig. 1B). A more in-depth analysis indicated that they did
not learn from the two types of outcomes to the same degree.
Thus, the learning algorithm that best explained participants’
choices included two different learning rates, one for learning
from shock outcomes (η–) and one for learning from no-shock
outcomes (η+; log Bayes factor compared with algorithm with a
single learning rate = 27.7). In this algorithm, the two learning
rates determine the degree to which the two types of outcomes
impact on subsequent expectations of gambling with each of the
decks, and these expectations in combination with the numbers
drawn by the computer determine whether subsequent gambles
are taken or declined. The algorithm also accounts for each
participant’s baseline propensity to take gambles. Learning in the
favored algorithm is weighted by associability (10, 11), and the
choices made for each deck tend to persist (7) (see SI Appendix
for details of all learning algorithms and a validation of the
model comparison procedure).
Further analysis showed that the difference between the two

learning rates captured significant interindividual variation (log
Bayes factor of algorithm with two learning rates per participant
compared with algorithm with one average learning rate per
participant and a group parameter for difference between the
learning rates = 20.1). On this basis, we next computed each

participant’s learning bias as the difference between the two
learning rates that best fitted the participant’s choices (η+ minus
η–). This bias reflects the degree to which a participant learned
what gambles to take (because they resulted in no-shock out-
comes) rather than what gambles to avoid (because they resulted
in shocks). A positive learning bias (η+ > η–) entails that a
propensity to gamble will emerge as the participant is learning
from outcomes, whereas a negative learning bias (η+ < η–)
should engender a propensity to decline a gamble (9). A com-
parison of participant’s raw propensity to gamble at the begin-
ning and end of the experiment confirmed this expectation (Fig. 1C).
Consequently, by the end of the experiment, participants with a
positive learning bias came to take more good gambles, but also
decline fewer bad gambles than participants with a negative
learning bias (Fig. 1D).
To ensure that all participants nevertheless gambled at a

similar rate and, thus, received roughly equal amounts of infor-
mation about the decks, we increased or decreased the numbers
the computer drew according to the participants’ own gambling
rate, while ensuring that the three decks are always matched
against similar computer’s numbers. Thus, because of their
propensity to gamble, positive learners ended up playing against
high numbers, whereas negative learners ended up playing
against low numbers [Fig. 1E; mean difference 0.36, confidence
interval (CI) 0.15–0.6, P = 0.001, bootstrap test; as a result,
positive learners received a slightly higher number of shocks
(mean 74.5, CI 72.7–76.5) than negative learners (mean 72.0, CI
70.3–73.3)]. In sum, participants who learned more from painful
outcomes developed a propensity to avoid gambling, whereas
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Fig. 1. Experimental design and learning performance. n = 41 participants. (A) Experimental design. On each trial, participants were presented with one of
three possible decks and a number between 1 and 9 drawn by the computer. If participants decided to gamble, a shock was delivered only if the number that
they drew was lower than the computer’s number. Participants were only informed whether they won or lost the gamble, not which number they drew.
Participants had to learn by trial and error how likely gambles were to succeed with each of the three decks. One deck contained a uniform distribution of
numbers between 1 and 9 (even deck), one deck contained more 1’s (low deck), making gambles 30% less likely to succeed, and one deck contained more 9’s
(high deck), making gambles 30% more likely to succeed. Opting to decline the gamble resulted in a 50% probability of shock regardless of which numbers
were drawn by the computer. (B) Gambles taken with each deck as a function of time. Percentages were computed separately for each set of 15 contiguous
trials (4 sets/60 trials per block). (C) Participants’ propensity to gamble in first (Left) and last (Right) blocks of trials as a function of learning bias. Propensity to
gamble was computed by regressing out the effects of deck and computer’s number on participant’s choices using logistic regression. The numbers 1 and –1
correspond to always and never gamble, respectively. Learning bias was inferred from a participant’s choices using the learning model. (D) Proportion of bad
gambles that were declined and good gambles that were taken in last block of trials as a function of learning bias. Participants with a positive learning bias
(positive learners) declined fewer bad gambles and took more good gambles than participants with a negative learning bias (negative learners). Gambles
were defined as good or bad based on probability of winning (good: >50%; bad <50%). Error bars: 95% bootstrap CI. (E) Average number drawn by
computer as a function of time and learning bias. To maintain participants at a 50% gambling rate, numbers increased for positive learners and decreased for
negative learners. In B and E, dotted line indicates simulated task performance of learning model. Shaded areas: 95% bootstrap CI.
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participants who learned more from success in preventing pain
developed a propensity to gamble.

Striatal Response to Pain Underlies Learning Bias. Behaviorally,
learning in our task was best explained as driven by outcome
prediction errors (SI Appendix, Figs. S1 and S2). Such prediction
errors are known to be expressed in the striatum (7–9, 12, 13),
and, thus, we focused on examining participants’ striatal activity
in response to task outcomes. BOLD responses in the striatum
(and elsewhere) were overwhelmingly stronger in response to
shock than to no-shock outcomes (SI Appendix, Fig. S3), likely
reflecting sensory and affective processing of the shocks. Thus, to
specifically test for prediction error signals, we examined the re-
sponse to each type of outcome (shock and no-shock) separately,
testing whether these responses were modulated by expectation.
We found that BOLD responses to no-shock outcomes in the

head of the caudate nucleus were negatively modulated by ex-
pectation (derived by using the learning algorithm that best fitted
participants’ behavior; Fig. 2A), consistent with an appetitive
prediction error. This signal was not explained away by the effect
of associability [P < 0.05, familywise error (FWE) corrected]. In
contrast, when accounting for prediction errors, we did not find
evidence for an associability signal in the striatum or elsewhere
(P > 0.05 FWE corrected). Moreover, when decomposing the
prediction error (PE) signal into the two components that affect
a participant’s expectation, the one reflecting previous experience
with the current deck and the other reflecting the number drawn
by the computer, we found a significant effect within the identified
striatal region in response to both PE components {Fig. 2B; peak
Montreal Neurological Institute (MNI) coordinates: deck expec-
tation [−10 6 6], t40 = –4.0, P = 0.04; number [−8 6 2], t40 = 4.2,
P = 0.03; P values are FWE corrected across the striatum}.
Whereas responses to no-shock outcomes were similarly modu-

lated by expectations in positive and negative learners, the response
to shock outcomes was qualitatively different in the two groups. No
prediction error signal was evident in striatal responses to shocks
across both groups of participants (P > 0.05, FWE small-volume
corrected). However, examining the two groups separately revealed
that the BOLD response to shocks was positively modulated by
expectation in negative learners and negatively modulated by ex-
pectation in positive learners (Fig. 2C; responses measured in the
same area where the response to no-shock outcomes was modu-
lated by expectations; correlation between learning bias and average
general linear model (GLM) coefficient r values =0.4, P = 0.005,
permutation test; partial correlation accounting for number of
shocks received: ρs = 0.38, P = 0.007, permutation test; a similar
difference between positive and negative learners was evident in the
caudate in a voxel-based analysis across the striatum—peak MNI
coordinates [−10 −2 18], P = 0.03 small-volume corrected, per-
mutation test—as well as when averaging across the whole caudate,
P = 0.05, Bonferroni corrected for the three subregions of the
striatum). In other words, in response to shocks, striatal activity in
negative learners was consistent with an aversively signed prediction
error, as seen in previous studies of pain prediction (14, 15). By
contrast, in positive learners, activity was consistent with an appe-
titively signed prediction error, as in previous work on pain-relief
prediction (16). Importantly, this difference between the groups was
not associated with a difference in the mean response to shock
compared with no-shock outcomes (P = 0.60, bootstrap test, GLM;
SI Appendix, Fig. S3 C and D). These results suggest that, across
both types of outcomes, positive learners express an appetitively
signed prediction error, whereas negative learners express the ab-
solute value of the prediction error.
If striatal prediction errors indeed drive avoidance learning,

then the modulation of striatal responses to outcomes by ex-
pectation should predict whether a participant subsequently
developed a propensity to gamble. Modulation consistent with
an appetitive prediction error (signaling which gambles should

A C
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B

Fig. 2. PE signaling in the striatum. n = 41 participants. (A) Striatal area
where BOLD response to no-shock outcomes was modulated by expecta-
tions. Map is masked and FWE corrected for volume of striatum (P < 0.05,
GLM). Extent: 22 voxels. Peak MNI coordinates: [–6 10 2] t40 = 4.5, corrected
P = 0.01; [10 8 4] t40 = 4.7, corrected P = 0.007. x and z denote Montreal
Neurological Institute (MNI) coordinates. (B) The two components of the
prediction error. Effects of deck-based expectation and the number drawn
by the computer on BOLD response to shock (Bottom) and no shock (Top)
outcomes in the striatal ROI identified in A. Results are shown separately
for positive (Left) and negative (Right) learners. A higher deck expectation
and a lower number indicate lower expectation of a shock, and thus, an
appetitive PE is consistent with a rise in the effect of number and a dip in
the effect of deck expectation on the response to the outcomes. The con-
verse pattern is consistent with an aversive PE. Time 0 indicates outcome
onset. Shaded area: SEM. (C) Effect of expectations on BOLD response to
no-shock and shock outcomes as a function learning bias. Positive values
indicate an effect that is consistent with an appetitive PE. *P < 0.05, **P <
0.005, error bars: 95% bootstrap CI. (D) Propensity to gamble in the last task
block as a function of a participant’s PE index, computed as the average
effect of expectation on striatal response across both types of outcomes. An
appetitive PE index predicted subsequent propensity to gamble (computed
as in Fig. 1C). GLM coefficients in C and D were taken from the striatal area
identified in A.
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be taken) should lead to a progressively increasing propensity to
gamble, whereas modulation consistent with an aversive pre-
diction error (signaling which gambles should be declined)
should lead to an increasing propensity to decline. In agreement
with this prediction, the degree to which striatal activity was
consistent with an appetitive (rather than aversive) prediction
error in the first two experimental blocks correlated with par-
ticipants’ propensity to gamble in the last block, even when
controlling for striatal activity in the last block (partial rs = 0.37,
P = 0.01, permutation test). By contrast, the propensity to
gamble in the first block was not correlated with the striatal
prediction error signaling in the second and third block (Fig. 2C;
partial rs = 0.05, P = 0.37, permutation test, controlling for the
prediction error difference in the first block). Thus, we can
conclude that striatal responses to outcomes were predictive of
whether a participant would subsequently develop a propensity
to accept or decline gambles.

Striatal Signals Prefigure Learned Neural Responses. Differences
between participants in how they learn should engender not only
differences in behavior (i.e., propensity to gamble), but also
differences in neural responses to stimuli or contexts about
which they are learning (i.e., decks). Such an effect can be
expected to be particularly evident for the even deck, because
the even deck provided a context where negative learners came
to avoid gambling and positive learners came to favor gambling
(P = 0.01, permutation test; Fig. 3A). In simple terms, negative
learners came to regard the even deck as a low deck, whereas
positive learners came to regard it as a high deck. This result,
however, is based on the same behavioral data used to estimate
participants’ learning biases. Thus, to test the same effect using
an alternative independent measure, we examined each partici-
pant’s BOLD responses to the three decks.
In keeping with the behavioral result, we found that BOLD

responses to the even deck were more similar to BOLD re-
sponses to the high deck in positive learners and more similar to
BOLD responses to the low deck in negative learners (Fig. 3A).
Moreover, the differences between participants in their repre-
sentation of the even deck correlated with the degree to which
striatal activity was consistent with an appetitive (rather than
aversive) prediction errors (Fig. 3B; rs = 0.42, P = 0.003, permu-
tation test). In fact, striatal activity in the first two experimental

blocks predicted subsequent BOLD response to the even deck,
measured during the last block (partial rs = 0.34, controlling for
striatal activity in last block, P = 0.02, permutation test), whereas
there was no evidence for the reverse relationship, between the
BOLD response to the even deck in the first block and striatal
activity in the last two blocks (partial rs = 0.03, controlling for
striatal activity in first block, P = 0.42, permutation test). To-
gether, these results suggest that differences in prediction error
signaling between positive and negative learners shaped their
subsequent neural responses to the stimuli about which partici-
pants were learning.

Learning Bias Is Predicted by the Structure of the Striatum. If indi-
vidual differences in learning and striatal function, evident in our
task, reflect stable individual traits, then we might also expect
underlying differences in striatal structure. Indeed, a positive
learning bias was associated with higher gray matter density in
the head of the caudate (extent: 1 voxel, MNI coordinates [–17
23 6], P = 0.03 FWE small-volume corrected), as measured by
using voxel-based morphometry (17) from magnetic transfer
anatomical images that are particularly suited for measuring
subcortical structures (18). To test whether the overall structure
of participants’ striatum predicted their learning biases, we used
the gray matter density of each participant’s 6,315 striatal voxels
to predict each participant’s learning bias, by means of a regu-
larized regression model that reflected the relationship between
learning bias and striatal gray matter density in other participants
(i.e., using fivefold cross-validation). Learning biases predicted
by striatal structure significantly correlated with the actual biases
derived from participants’ behavior (Fig. 4A; r = 0.58, P = 0.001,
permutation test), with a positive learning bias predicted for 17
of the 22 positive learners, and a negative learning bias predicted
for 13 of the 19 negative learners. Furthermore, a predictive
relationship between gray matter density and learning bias was
mostly negative throughout the putamen and accumbens and
mostly positive in the caudate, and thus, it did not involve dif-
ferences in overall striatal volume (Fig. 4B; mean predictive
coefficient 0.0, CI –0.0002–0.0001). This predictive spatial pat-
tern was not random, but presented a striking match with the

A B

Fig. 3. Behavioral and neural responses to the even deck. (A) Propensity to
gamble and BOLD response to even deck as a function of learning bias.
Propensity to gamble was computed as in Fig. 1C but exclusively for the even
deck. By contrast, all participants avoided gambling with the low deck
(propensity to gamble –0.42, CI –0.54 to –0.30) and favored gambling with
the high deck (propensity to gamble 0.72, CI 0.60–0.80). BOLD response of 1
indicates that the response to the even deck was identical to the response to
the high deck, whereas a value of –1 indicates that it was identical to the
response to the low deck. Similarity of BOLD responses was computed as the
Euclidian distance between the two responses’ GLM coefficients across all
gray matter. Error bars: 95% bootstrap confidence intervals, *P = 0.05, **P =
0.01, permutation test. (B) BOLD response to even deck, compared with high
and low decks, as a function of striatal PE index. PE index taken from Fig. 2D,
and BOLD response was computed as in A.

A B C

Fig. 4. Striatal gray matter density predicts learning bias. n = 41 partici-
pants. (A) Learning bias predicted by gray matter density in the 6,315 voxels
of the striatum as a function of the true learning bias inferred from par-
ticipants’ choices. Learning biases were predicted from gray matter density
by using cross-validated regularized linear regression. (B) Gray matter den-
sity coefficients used to predict learning bias. To create the map, predictive
coefficients were averaged across participants and generalized across the
striatum by assigning a fraction of each coefficient to each voxel propor-
tionally to the gray matter-density variance shared between that voxel and
the coefficient’s designated voxel. (C) Representation of expectations in the
response to shocks. t values were computed by using a group-level GLM that
included both negative learners, whose BOLD response was regressed
against aversively signed prediction errors, and positive learners, whose
BOLD response was regressed against appetitively signed prediction errors.
There were no significant differences between positive and negative
learners within the striatum (P > 0.5, FWE small-volume corrected). The map
is masked for the volume of the striatum and not thresholded. z value in B
and C denotes MNI coordinate.
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area where BOLD responses to shocks were modulated by ex-
pectation (Fig. 4C; regression of individual expectation GLM
coefficients on group gray matter-density predictive coefficients:
mean 0.44, CI 0.22–0.77, P = 10−5, bootstrap test). That is, a
more positive learning bias was predicted by higher gray matter
density where responses to shocks were consistent with a (ap-
petitive or aversive) prediction error signal, and lower gray matter
density in areas that showed no such signal.

Amygdala Specifically Involved in Learning from Pain. A large body
of animal and human work implicates the amygdala and peri-
aqueductal gray (PAG) in learning from aversive outcomes and,
in particular, in generating aversive prediction errors (19–24).
BOLD responses to outcomes in these areas suggests both areas
were involved in learning in our task, albeit in different ways.
Responses to shock and no-shock outcomes in the PAG were
modulated by expectations in the same way as in our striatal ROI
(SI Appendix, Fig. S3E; although we note that the ability of fMRI
to discern PAG signals from neighboring structures is limited;
ref. 25). In contrast, the amygdala showed no significant modu-
lation in the response to no-shock outcomes, but its response to
shocks was consistent with an aversive prediction error across the
whole group (extent: 1 voxel, MNI coordinates [28 –6 –18], t40 =
2.8, P = 0.04 corrected for the volume of the amygdala). This
latter effect was particularly pronounced in participants with a
negative learning bias (Fig. 5A), mirroring the modulation of
striatal and PAG activity in these same participants.
Interestingly, a positive learning bias was associated with a

stronger response to shock than to no-shock outcomes in right
posterior insula (extent: three voxels, peak MNI coordinates [46
–32 20], P = 0.04 FWE-corrected for all voxels that significantly
responded to shocks, shown in SI Appendix, Fig. S3A). The insula
is thought to feed information about salient, painful, and aver-
sive events to amygdala and striatum (26–28). Therefore, we next
examined functional connectivity between this area and the
striatal and amygdala regions in which response to outcomes was
modulated by expectation. Positive learners showed significant
functional connectivity between the insula and striatal regions,
whereas negative learners showed significant functional connec-
tivity between the insula and amygdala regions (correlation of
learning bias with difference between striatal and amygdala
functional connectivity: rs = 0.42, P = 0.005; Fig. 5B). Taken to-
gether, these results are consistent with previous suggestions that
the amygdala is exclusively involved in learning from increases in
aversive outcomes, whereas the striatum and PAG also partake in
learning from decreases in aversive outcomes (21, 23, 29).

Discussion
We demonstrate that the two ways through which one can learn
to avoid harm are used to different degrees by different indi-
viduals. In negative learners—those who primarily learned from
being shocked and, thus, developed a propensity to avoid gam-
bles—dorsal striatal and amygdalar responses to shocks were
consistent with an aversive prediction error. In contrast, in pos-
itive learners—those who primarily learned from their success in
preventing shocks and, thus, developed a propensity to gamble—
the dorsal striatum’s response to shocks was consistent with an
appetitive prediction error. This difference in striatal responses
to outcomes anticipated observed differences in learned behav-
ior, and in the neural responses to stimuli about which participants
were learning. Participants’ learning bias was also predicted by the
structure of their striatum, indicating that learning biases in our
task reflected, at least in part, stable individual traits. Together,
the findings reveal neural underpinnings of an elementary be-
havioral trait that predicts whether an individual learns pre-
dominantly what to do to prevent harm or what to avoid doing.
A multitude of animal and human studies implicate the striatum

in learning about aversive outcomes (12, 13, 30–34). Striatal areas,
including the caudate region identified in our study, have been
shown to represent prediction error signals in both classical con-
ditioning (14–16) and instrumental pain avoidance learning (35,
36). However, individual differences in the expression of these
prediction error signals have not been studied to our knowledge.
The present study was designed to assess the degree to which
participants learn what actions have painful outcomes compared
with what actions help avoid pain. The latter type of learning,
defined in the animal literature as active avoidance learning, is
particularly interesting, because it specifies that the very absence
of a shock is reinforcing (37). Indeed, our results show that striatal
response to outcomes in participants who were biased in favor of
active avoidance learning mimicked striatal responses typically
seen in studies of reward learning, with no-shock outcomes cast as
reward and shock outcomes as reward omission. In contrast, in
participants biased in favor of passive avoidance learning (i.e.,
learning what gambles should be avoided), striatal response to
painful outcomes was consistent with an aversive prediction error,
as seen in fear conditioning (14).
Thus, our results show that striatal response to pain is consistent

with an appetitive prediction error in some individuals and with an
aversive prediction error in others. In contrast, striatal responses to
successful prevention of pain seem broadly consistent with an ap-
petitive prediction error. Put another way, while some individuals
represent an appetitively signed prediction error in response to both
types of outcomes, others represent an unsigned prediction error
(38) (aversively signed in response to pain and appetitively signed in
response to pain prevention). That said, we note that in our ex-
periment, the response to pain was generally stronger than the re-
sponse to pain prevention, which is inconsistent with a purely
appetitive prediction error, although this stronger response could
reflect affective and sensory processing of the shocks.
Our findings concur with a view of the striatum as involved in

processing both appetitive and aversive outcomes (26, 39). The
amygdala, in contrast, was involved in our study solely in pro-
cessing aversive outcomes, but not their omission. This involve-
ment of the amygdala was most evident in participants who
primarily learned from shock outcomes, and underscored by
greater functional connectivity with the insula, a region with an
established role in processing salient and aversive outcomes (40).
These results strongly concur with previous work, indicating that
learning from aversive outcomes engages the amygdala, whereas
learning from success in avoiding aversive outcomes involves in-
hibition of the amygdala and activation of the striatum (29, 41-43).
That said, we note that animal studies that were able to examine
subregions of the striatum and amygdala with greater spatial

A B

Fig. 5. Individual learning biases outside of the striatum. (A) Effect of ex-
pectation on BOLD response to shocks as a function of learning bias in the
amygdala region where this effect was significant (MNI coordinates [28 −6
−18]). Responses were most consistent with an aversive prediction error in
participants who mostly learned from shock outcomes. n = 41 participants.
(B) Functional connectivity between striatal (Fig. 2A) and amygdala (A) ROIs,
and the insula area in which the response to shocks correlated with learning
bias (MNI coordinates [46 −32 20]). Error bars: 95% bootstrap CI, *P ≤ 0.05,
NS: P > 0.1.
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resolution reveal a more complex picture (44, 45). Finally,
whereas functional connectivity between medial prefrontal cor-
tex, amygdala, and striatum has been shown to mediate avoid-
ance learning (43), it did not mediate learning biases in our task,
suggesting that such connectivity might be equally involved in
learning from increases and decreases in aversive outcomes.
Several reports have linked variations in the structure of the

striatum to individual differences in healthy and pathological
decision-making behavior (46, 47) and to the expression of certain
pain disorders (48, 49). Of particular relevance to the present
study is the observation that obsessive-compulsive disorder
(OCD), which features compulsive harm-avoidance behavior, is
associated with higher gray matter density in the putamen (50). In
our study, higher gray matter density in the putamen (and lower
gray matter density in the caudate) predicted better learning from
shocks and poorer learning from success in avoiding shocks. It is
possible that such insensitivity to safety signals might engender
excessively persistent harm avoidance behaviors, which in healthy
individuals normally terminate when safety is attained. Thus, this
finding raises the interesting possibility that failure to adjust to
success in harm avoidance may contribute to compulsivity in OCD.

In conclusion, we describe for the first time to our knowledge
individual biases in learning from actual painful outcomes on the
one hand and from their prevention on the other. These biases
are associated with qualitative differences in striatal prediction
error signaling and predicted by differences in striatal structure.
Further research should reveal how these functional and struc-
tural characteristics map onto psychiatric disorders that feature
imbalanced harm avoidance behavior.

Materials and Methods
The experimental protocol was approved by the University of College London
local research ethics committee, and informed consent was obtained from all
participants. Electrical stimulation was individually titrated to induce a
moderate subjective pain level. Participants performed the experiment while
being scanned in a Siemens Trio 3T MRI scanner. See SI Appendix for further
details of the experiment, modeling, and functional MRI procedures.
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Figure S1. Model comparison and parameter fitting. (A) Eleven different learning algorithms were fitted to participants’ 

behavior. Goodness of fit was computed using the integrated Bayesian Information Criterion (iBIC15). A difference larger 

than 10 constitutes very strong evidence in favor of the model with lower iBIC value. The best-fitting model (‘adjusted Q 

value learning + associability + deck-specific persistence’) learns a value for taking a gamble with each of the three decks. 

Learning in the model is driven by associability-weighted prediction errors (i.e., the difference between actual and 

expected outcomes), where outcome expectations factor in previous experience with the deck and the computer’s 

number. Associability was modeled as in previous work11,12. In addition, the model tends to repeat actions recently taken 

with each deck (Deck-specific persistence, modeled as in previous work10). Because the same model without associability 

explained the data almost equally well (iBIC difference = 2), we proceeded to evaluate learning/persistence biases both 

with, and without, associability. (B) The best fitting model from Figure S1A was compared as is (‘no bias’) with four variants 

of the model, each including a different type of learning/persistence bias. Note that all models already include a baseline 

decision bias parameter. Of the four variants, the best fitting model involved a bias in learning, implemented by allowing 

two different learning rates for negative and positive prediction errors. We also tested the same biases on the model 

without associability, but these did not fit the data as well (iBIC difference between best variants of each model = 16.7 in 

favor of model with associability). (C) Individual learning rates fitted to each participants’ behavior using the best-fitting 

model from (B). Learning rates for negative prediction errors (red) and for positive prediction errors (blue) were widely 

distributed anti-correlated (rs = –0.57, p = 10–4, permutation test). Error bars: 95% CI. 
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simulated model best-fitting model(s) (10 trials) 

no learning: 1 1 1 1 1 1 1 1 1 1 1 

general persistence + no learning: 2  1 1 1 1 1 1 1 1 1 1 

deck-specific persistence + no learning: 3 3 3 3 3 3 3 3 3 3 3 

Q value learning: 4 4 4 4 4 4 4 4 4 4 4 

adjusted Q value learning: 5 5 5 5 5 5 5 5 5 5 5 

associability + adjusted Q value learning: 6 6 6 6 6 6 6 6 6 6,5 6 

general persistence + adjusted Q value learning: 7 5 5 5 5 5 5 5 5 5 5 

deck-specific persistence + adjusted Q value learning: 8 8 8 8 8 8 8 8 8 8 8 

associability + deck-specific persistence + adjusted Q value learning: 9 9 9 9 9,8 9,8 8,9 8,9 9 9 8 

Q function learning: 10 10 10 10 10 10 10 10 10 10 10 

 

simulated model best-fitting model(s) (10 trials) 

no bias: 1 1,4 1 1 1 1 1 1 1 1,4 1 

biased subjective value: 2 2,3 2 2 2 3,2 3,2 3,2 3,2 2 2,3 

biased learning: 3 3 3 3 3 3 3 3 3 3 2,3 

biased persistence: 4 1 1 1 1 1 1 1 1 1 1 

biased associability: 5 1 1 5 5 5 5 1 1 5 5 

 

Figure S2. Validation of the model comparison procedure. We used each of the models to generate 10 full experimental 

data sets (each data set comprised 41 participants, 180 trials per participant) by having each model perform the 

experiment with each of the parametrizations that best-fitted individual participants. The signal-to-noise ratio in these 

simulations was determined by setting the β parameters as those which fitted participants’ behavior the best. We then 

applied the model-comparison procedure to each simulated data set. The best-fitting models were defined as the models 

with the lowest BIC score or within 6 of the lowest BIC, since a BIC difference of 6 indicates strong evidence14. (A) 

Validation of model comparison shown in Figure S1A. The models that best-fitted the real experimental data (models 8 and 

9) best-fitted only datasets generated by these same models (20/20) and none of the data sets generated by other models 

(0/80). Note that, as expected, models, in which some parameters were poorly justified by the experimental data, were 

sometimes confused with simpler models. Algorithm 11 (‘optimal inference’) was omitted from the validation due to its 

prohibitive computational complexity, as it involves a nested slice-sampling procedure on each simulated trial. (B) 

Validation of model comparison shown in Figure S1B. The model that best-fitted the real experimental data (model 3) only 

best-fitted (as a sole winner) datasets generated by that same model (9/10) and none of the datasets generated by other 

models (0/40). 
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Figure S3. Further analyses of BOLD and skin 

conductance responses to outcomes. Related 

to Figure 2. n = 41 participants. (A) BOLD 

response to shocks as compared to no-shock 

gamble outcomes (n = 41 participants, p < 0.05 

FWE corrected). Activated areas include the 

insula and adjacent somatosensory cortex, 

thalamus, caudate (the same area identified in 

Figure 2), and medial and lateral prefrontal 

areas. By contrast, no voxels responded to no-

shock outcomes more than to shock outcomes. 

(B) Skin conductance response to shock and 

no-shock outcomes as a function of time since 

outcome onset. The response to shocks was 

stronger than to no-shock outcomes 

(difference between outcomes 3.7, CI 1.0 to 

7.4, GLM, p = 0.007, bootstrap test) and this effect was similar in positive and negative learners (difference between 

groups 3.8, CI –4.4 to 9.6, GLM, p = 0.34, bootstrap test). Skin conductance responses were baseline-corrected by the 

average level at the first two seconds. Shaded area: 95% bootstrap CI. a.u.: arbitrary units. (C) BOLD response to shock and 

no-shock outcomes in negative learners (n = 19 participants). (D) BOLD response to shock and no-shock outcomes in 

positive learners (n = 22 participants). In (C) and (D), shaded area denotes s.e.m, and time 0 indicates outcome onset. (E) 

Effect of expectations on BOLD response to outcomes in periaqueductal gray (PAG) as a function of learning bias and 

outcome type. The pattern of activity resembles that found in the striatum (see Figure 2C). Following Linnman et al. (2012), 

GLM coefficients were taken from MNI coordinates [±4 –29 –12]. Error bars: 95% bootstrap CI, **: p < 0.002, *: p < 0.02, 

NS: p > 0.05. 
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SI Material and Methods 

Participants. 43 human volunteers (age range = 18–42 years, 30 female, 12 male, recruited 

from a participant pool at University College London) participated in the experiment. 

Inclusion criteria were based on age (minimum = 18 years, maximum = 50 years) and right-

handedness. Exclusion criteria included color blindness, neurological or psychiatric illness, 

and psychoactive drug use. Before the experiment, participants completed an 80-item 

questionnaire composed of several measures of different mood and anxiety traits1-5. Age, 

sex and mood and anxiety traits did not differ between participants later classified as 

positive and negative learners (all p > 0.1, bootstrap test). To allow sufficient statistical 

power for comparisons between two groups of participants, the sample size was set as 

roughly double the sample sizes that are recommended in the literature and that have been 

used in recent functional Magnetic Resonance Imaging (fMRI) studies of decision-making. 

Two participants failed to complete the experiment due to anxiety or discomfort and were 

excluded, leaving 41 participants in all subsequent behavioral and neural analysis. 

Participants received monetary compensation for their time (between £25 and £30). The 

experimental protocol was approved by the University of College London local research 

ethics committee, and informed consent was obtained from all participants. 

Experimental task. To test for individual differences in learning from actual painful 

outcomes compared to learning from success in preventing pain, we designed a card game, 

inspired by previous work on reward learning6,7, in which participants’ goal was to minimize 

the number of painful electrical shocks they could receive. The game consisted of 180 trials, 

divided into three 60-trial blocks. On each trial, participants were first shown which one of 

three possible decks (each having distinct color and pattern) they will be playing with. After 

a short interval (2 to 5 s, uniformly distributed), the computer drew a number between 1 

and 9 and participants had up to 2.5 s to choose whether they wanted to gamble that the 

number that they draw will be higher than the computer’s number. If participants chose to 

gamble, they avoided a shock if the number that they drew was indeed higher than the 

computer’s number, and they received a shock if it was lower (as well as in half of the trials 

in which the numbers were equal). Conversely, if participants declined the gamble, they 

received a shock with a fixed 50% probability that was known to the participants. Not 

making any choice always resulted in a shock. Feedback was provided 700 ms following each 

choice and consisted of a ‘shock’, ‘no-shock’ or ‘shock/no-shock’ visual symbol (Figure 1A) 

accompanied, when appropriate, by electrical stimulation (the drawn number was not 

shown). Trials in which no choice was made (less than 1% of trials) were excluded from all 

subsequent analyses. Critically, participants were told that each of the three decks 

contained a different proportion of high and low numbers, and thus, they had to learn by 

trial and error how likely a gamble was to succeed with each of the decks. Unbeknownst to 

participants, one deck contained a uniform distribution of numbers between 1 and 9 (‘even 

deck’), one deck contained more 1’s than other numbers (‘low deck’), making gambles 30% 

less likely to succeed, and one deck contained more 9’s than other numbers (‘high deck’), 
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making gambles 30% more likely to succeed. In the first 15 trials, the computer drew the 

numbers 4, 5, and 6 three times each, and the other numbers once each. To make sure that 

all participants take a gamble in approximately 50% of trials, in each subsequent set of 15 

trials, the numbers that the computer drew three times were increased by one (e.g., [4, 5, 6] 

 [5, 6, 7]) if participants took two thirds or more of the gambles against these numbers in 

the previous 15 trials, or decreased by one if participants took a third or less of the gambles. 

Participants’ decks were pseudorandomly ordered while ensuring that the three decks were 

matched against similar computers’ numbers and that no deck appeared in successive trials 

more than the other decks.  

Electrical stimulation. Participants underwent an established individual pain titration 

procedure8,9 with a Digitimer DS7a electric stimulator (Welwyn Garden City, UK). Following a 

brief overview of the equipment and titration process, an electrode was placed on the back 

of the participant’s left hand. Titration began with a low-current electric shock (0.1 mA) and 

participants were asked to rate their experience of pain on a visual 22-point scale (ranging 

from 0 = no sensation to 5 = mildly painful to 10 = intolerable). The initial rating was 

followed by a series of shocks, increasing in small milliamp increments. Subjective ratings of 

pain were collected after each shock until a rating of 6 was reached. The final shock 

intensity was then used throughout the experiment. Habituation to stimulation over the 

course of the experiment, as measured by how participants rated the shock again at the end 

of the experiment, was generally mild (mean rating change –0.12). Absolute shock 

intensities and levels of habituation did not differ significantly between participants later 

classified as positive and negative learners (p > 0.1, bootstrap test). 

Pre-task training. Before performing the experiment, to familiarize participants with the 

basic structure of the task, participants received training outside the scanner without 

electrical shock feedback. Training consisted of 60 trials involving a single ‘even’ deck and 

visual feedback indicating the number that participants drew.  

Post-task questionnaire. Following the experiment, participants were asked to rate each 

deck as to whether it contained mostly low or mostly high numbers on a visual 22-point 

scale (ranging from 0 = only low numbers to 1 = only high numbers). Rating confirmed that 

participants learned the task well (low deck 0.22 CI 0.17 to 0.29; even deck 0.43 CI 0.37 to 

0.47; high deck 0.81 CI 0.74 to 0.86), and the ratings did not differ between participants 

later classified as positive and negative learners (p > 0.1, bootstrap test). No participant 

reported being aware that the computer’s numbers were adjusted to the participant’s 

choices.  

Propensity to gamble. To compute a participant’s propensity to take or avoid gambles, we 

fitted to participant’s decisions a logistic regression model comprised of three terms: an 

intercept, the computer’s numbers (scaled to range between –1 (for the number 9) and 1 

(for the number 1)), and the participant’s deck (-1 for low, 0 for even and 1 for high). 

Propensity to gamble was then computed by applying the logistic function to the intercept 
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alone and scaling the result to range between –1 and 1. This measure indicates the 

participant’s tendency to take or avoid gambles when the odds of winning and losing are 

equal (i.e., when playing with the even deck against the number 5).  

Learning algorithms. To determine what learning algorithm participants used to perform the 

task, we compared five different algorithms in terms of how well they explained 

participant’s choices. In all algorithms, the probability of taking each gamble was modeled 

by applying the logistic function to a term that represented available evidence.  

Algorithm 1 (‘no learning’) is oblivious to previous experience with the decks, and it 

computes the evidence as 𝛽 + 𝛽′𝑁𝑡, where 𝑁𝑡 is the computer’s number at trial t, scaled 

between –1 and 1 as above, 𝛽′ is an inverse temperature parameter, and 𝛽 is a decision bias 

parameter.  

Algorithm 2 (‘no learning + general persistence’) tends to repeat recently taken actions10. To 

this end, it maintains a persistence variable 𝑝𝑎 for each action 𝑎 (‘gamble’ and ‘decline’). 𝑝𝑡
𝑎 

is set to one when the action is taken, and decays exponentially through multiplication by a 

free parameter 𝜆 otherwise. The evidence is then computed as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′∆𝑝𝑡, where 

∆𝑝𝑡 = 𝑝𝑡
gamble

− 𝑝𝑡
decline, and 𝛽′′ is a free parameter that controls persistence strength.  

Algorithm 3 (‘no learning + deck-specific persistence’) tends to repeat actions recently taken 

with each deck. Thus, it maintains a persistence variable 𝑝𝑡
𝑑,𝑎 for each deck-action pair 

(𝑑, 𝑎), and the evidence is computed with respect to the current deck as 𝛽 + 𝛽′𝑁𝑡 +

𝛽′′∆𝑝𝑡
𝑑𝑡 , where ∆𝑝𝑡

𝑑𝑡 = 𝑝𝑡
𝑑𝑡,gamble

− 𝑝𝑡
𝑑𝑡,decline. 

Algorithm 4 (‘Q value learning’) tracks the expected outcome of gambles with each deck d 

by means of a Q value as follows: 𝑄𝑡+1
𝑑𝑡 = 𝑄𝑡

𝑑𝑡 + 𝜂𝛿𝑡, where 𝛿𝑡 = 𝑟𝑡 − 𝑄𝑡
𝑑𝑡  is the difference 

between the actual (𝑟𝑡) and expected (𝑄𝑡
𝑑𝑡) outcome of a gamble (i.e., the outcome 

prediction error, ignoring the effect of the computer’s number), 𝑟𝑡 = 1 stands for shock, 

𝑟𝑡 = −1 stands for no shock, and 𝜂 is a learning rate parameter. The evidence is then 

computed as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 .  

Algorithms 5 (‘adjusted Q value learning’) is similar to algorithm 4, except that prediction 

errors are computed with respect to expectations that also factor in the computer’s 

number: 𝛿𝑡 = 𝑟𝑡 − 𝑄𝑡
𝑑𝑡 −

𝛽′

𝛽′′
𝑁𝑡. This way, the algorithm learns more about the decks from 

outcomes that are more surprising (i.e., from no-shock outcomes of gambles taken against 

higher numbers, and from shock outcomes of gambles taken against lower numbers). 

Algorithm 6 (‘adjusted Q value learning + associability’) is similar to algorithm 5, except that 

learning is modulated by an associability variable 𝛼𝑡
𝑑, computed as a running average of the 

absolute value of recent prediction errors for each deck (i.e., 𝛼𝑡+1
𝑑𝑡 = 𝛼𝑡

𝑑𝑡 + 𝜂′(|𝛿𝑡| − 𝛼𝑡
𝑑𝑡)), 

where 𝜂′ is the associability update rate11,12. Thus, Q values were updated as 𝑄𝑡+1
𝑑𝑡 = 𝑄𝑡

𝑑𝑡 +
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𝛼𝑡
𝑑𝑡𝜂𝛿𝑡. Associability was initialized as a free parameter in between 0 and the maximal 

possible prediction error.  

Algorithm 7 (‘adjusted Q value learning + general persistence’) is similar to algorithm 5, 

except that it tends to repeat recent actions similarly to algorithm 2. Thus, it computes the 

evidence as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 + 𝛽′′′∆𝑝𝑡. 

 Algorithm 8 (‘adjusted Q value learning + deck-specific persistence’) is similar to algorithm 

5, except that it tends to repeat actions recently taken with each deck similarly to algorithm 

3. Thus, it computes the evidence as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 + 𝛽′′′∆𝑝𝑡

𝑑𝑡. 

Algorithm 9 (‘adjusted Q value learning + deck-specific persistence + associability’) is similar 

to algorithm 8, except that learning is modulated by associability as in algorithm 6. 

 Algorithm 10 (‘Q function learning’) learns a two-parameter logistic function for each deck, 

consisting of an intercept 𝑎𝑡+1
𝑑𝑡 = 𝑎𝑡

𝑑𝑡 + 𝜂𝛿𝑡, and a slope 𝑏𝑡+1
𝑑𝑡 = 𝑏𝑡

𝑑𝑡 + 𝜂′𝑁𝑡𝛿𝑡, where 𝛿𝑡 is 

computed by applying the logistic function to  𝑎𝑡
𝑑𝑡 + 𝑏𝑡

𝑑𝑡𝑁𝑡 and subtracting this quantity 

from 0 in the case of a shock outcome or from 1 in the case of a shock outcome. These 

update equations constitute a simplification of the Iteratively Reweighted Least Squares 

(IRLS) maximum likelihood estimation for logistic regression13. The evidence is then 

computed as 𝛽 + 𝛽′(𝑎𝑡
𝑑𝑡 + 𝑏𝑡

𝑑𝑡𝑁𝑡).  

Algorithm 11 (‘optimal inference’) makes full use of all available evidence given what 

participants knew about the task. On each trial, the algorithm infers the maximum a 

posteriori solution for the logistic function corresponding to each deck, given all previously 

observed outcomes and Gaussian priors on the intercept and slope variables (intercept prior 

mean = 0 and slope prior mean = 2.29, which fit the training deck; intercept and slope 

variance determined by free parameters). The evidence is then computed as in Algorithm 

10. This algorithm was implemented by estimating through slice sampling13 on each trial the 

Bayesian logistic regression solution given all previously observed gamble outcomes.  

Learning/persistence biases. After identifying the best-fitting learning algorithms (Algorithm 

8: ‘adjusted Q value learning + deck-specific persistence’ and Algorithm 9: ‘adjusted Q value 

learning + deck-specific persistence + associability’), we tested whether the algorithms’ 

ability to explain participants’ choices would be improved by implementing a 

learning/persistence bias in favor of gambling or declining a gamble. The models already 

include a decision bias parameter that allows them to favor either gambling or declining to 

begin with, but a learning/persistence bias can make such a tendency evolve over time. 

Thus, we compared the basic algorithm (‘no bias’) to four variants of the same algorithm, 

each of which involves a different type of additional bias. Variant 1 (‘biased subjective 

value’) is allowed to weight shock and no-shock outcomes differently by means of a 

subjective value bias parameter 𝜓. Thus, rt is set as √𝜓 for no-shock outcomes and as −
1

√𝜓
 

for shock outcomes, such that 𝜓 reflects the ratio between the subjective value of no-shock 
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and shock outcomes. Variant 2 (‘biased learning’) is allowed to learn at a different rate from 

shock and no shock outcomes. Therefore, this variant includes two learning rate 

parameters, one for shock outcomes (η–) and one for no-shock outcomes (η+). Variant 3 

(‘biased persistence’) allows differential persistence in gambling and declining. Therefore, 

this variant includes two persistence decay parameters, one for gambling and one for 

declining. Variant 4 (‘biased associability’, for Algorithm 9 only) is allowed to update 

associability at a different rate following shock and no shock outcomes. Therefore, this 

variant includes two associability update rate parameters, one for gambling and one for 

declining. Variant 2 of Algorithm 9 turned out to be the best-fitting model (see Model fitting 

and Model comparison below), and thus, individually fitted positive and negative learning 

rate parameters were used to classify participants as positive (η+ > η–) and negative (η+ < η–) 

learners. 

Model fitting. To fit the parameters of the different learning algorithm to participants’ 

choices, we used a hierarchical expectation-maximization approach13. We first modeled 

each of the parameters using some initial prior distribution at the group level. We then 

sampled 100,000 random parameterizations from these priors, computed the likelihood of 

observing participants’ choices given each parametrization, and used the computed 

likelihoods as importance weights61 to resample (and accordingly reparameterize) the 

group-level prior distributions. These steps were iteratively repeated until convergence. 

Finally, to obtain the best-fitting parameters for each individual participant, we computed a 

weighted mean of the final batch of 100,000 parametrizations, in which each 

parameterization was weighted by the likelihood it assigned to the individual participant’s 

choices. Learning rate parameters were modeled with beta distributions (initialized with α = 

1, β = 1), inverse temperature and variance parameters were modeled with gamma 

distributions (initialized with k = 3, θ = 3), the bias parameter was modeled with a normal 

distribution (initialized with μ = 0 and σ = 1), and the subjective-value bias parameter was 

modeled with a log-normal distribution (initialized with μ = 0 and σ = 1). 

Model comparison. To compare between pairs of models, in terms of how well each model 

accounted for participants’ choices, we estimated the log Bayes factor14 by means of an 

integrated Bayesian Information Criterion15 (iBIC). We estimated the evidence in favor of 

each model (ℒ) as the mean likelihood of the model given 100,000 random 

parameterizations drawn from the fitted group-level priors13. We then computed the iBIC by 

penalizing the model evidence to account for model complexity as follows: iBIC =

−2 lnℒ + 𝑘 ln 𝑛, where k is the number of fitted parameters and n is the number of 

participant choices used to compute the likelihood. Lower iBIC values indicate a more 

parsimonious model fit.  

fMRI data acquisition. Whole-brain T2*-weighted echo-planar imaging (EPI) data were 

acquired using a Siemens Trio 3T scanner, using a 32-channel headcoil. The sequence 

chosen was selected to minimize dropout in the striatum, anterior cingulate and 

amygdala16. Each volume contained 37 slices of 3-mm isotropic data; echo time = 30 ms, 
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repetition time = 2.56 s per volume, echo spacing of 0.5 ms, slice tilt of −30° (T > C), Z-shim 

of −0.4 mT/m ms, ascending slice acquisition order. The mean number of volumes acquired 

per partcipant was 867 (the total number of volumes acquired varied depending on 

participants’ choice times). To account for T1 saturation effects, the first six volumes of each 

session, taken before the experiment was started, were discarded. 

Structural MRI data acquisition. Magnetic Transfer (MT) maps, which are particularly 

suitable for structural measurements of subcortical regions17, were calculated from a multi-

parameter protocol based on a 3D multi-echo fast low angle shot (FLASH) sequence18. Three 

co-localized 3D multi-echo FLASH datasets were acquired in sagittal orientation with 1 mm 

isotropic resolution (176 partitions, field of view (FOV) = 256 × 240 mm2, matrix 

256 × 240 × 176) and non-selective excitation with predominantly proton density weighting 

(PDw: TR/α = 23.7 ms/6°), T1 weighting (18.7 ms/20°), and MT weighting (23.7 ms/6°; 

excitation preceded by an off-resonance Gaussian MT pulse of 4 ms duration, 220° nominal 

flip angle, 2 kHz frequency offset). The signals of six equidistant bipolar gradient echoes (at 

2.2 ms to 14.7 ms echo time) were averaged to increase the signal-to-noise ratio. Semi-

quantitative MT parameter maps, corresponding to the additional saturation created by a 

single MT pulse, were calculated by means of the signal amplitudes and T1 maps19, 

eliminating the influence of relaxation and B1 inhomogeneity20. 

Field maps. Whole-brain field maps (3-mm isotropic) were acquired to allow for subsequent 

correction in geometric distortions in EPI data at high field strength. Acquisition parameters 

were 10-ms/12.46-ms echo times (short/long respectively), 37-ms total EPI readout time, 

with positive/up phase encode direction and phase-encode blip polarity −1. 

Physiological monitoring. During scanning sessions, peripheral measurements of 

participants’ pulse, breathing and skin conductance were made together with scanner slice 

synchronization pulses using Spike2 data acquisition system (Cambridge Electronic Design 

Limited, Cambridge UK). The cardiac pulse signal was measured using an MRI compatible 

pulse oximeter (Model 8600 F0, Nonin Medical, Inc. Plymouth, MN) attached to the 

participant’s left index finger. The respiratory signal, thoracic movement, was monitored 

using a pneumatic belt positioned around the abdomen close to the diaphragm. Skin 

conductance was recorded on the tips of the left middle and ring fingers using EL509 

electrodes (Biopac Systems Inc., Goleta, CA, USA) and 0.5%-NaCl electrode paste (GEL101; 

Biopac). Constant voltage (2.5 V) was provided by a custom-build coupler, whose output 

was converted to an optical pulse with a minimum frequency of 100 Hz at 0 μS to avoid 

aliasing, and then converted to a digital signal (Micro1401, CED, Cambridge, UK). 

Temperature and relative humidity of the experimental room was kept at 20 °C and 50%. 

fMRI preprocessing. The following pre-statistics processing was applied in SPM12 (Wellcome 

Trust Centre for Neuroimaging) using default settings: slice-timing correction, motion 

correction, field-map-based distortion correction, co-registration with structural MRI and 

normalization to MNI space, spatial smoothing using a Gaussian kernel of 8.0 mm Full-Width 
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at Half Maximum (FWHM), and high-pass temporal filtering with a cutoff frequency of 

0.0078 Hz. 

fMRI General Linear Model (GLM). To examine BOLD responses to the different decks, as 

well as the representation of prediction error signals, we performed a GLM analysis using 

SPM12 that included separate regressors indicating onsets of the appearance of the low, 

even and high decks, the computer’s number draw, the participant’s decision, and the four 

different types of outcomes (shock or no-shock outcomes of taken or declined gambles). In 

addition, the GLM included parametric regressors indicating the computer’s number when 

number was drawn, the participants’ choice at the time of decision, and the participant’s 

prediction errors at gamble outcomes. Prediction errors were computed by applying the 

learning model, instantiated with mean group parameters, to the participant’s sequence of 

stimuli and outcomes. Mean group parameters were used in line with previous work21-27 in 

order to regularize individual estimates, which are otherwise noisy, as well as to ensure that 

a participant’s behavioral data do not bias the results of the participant’s GLM analysis. This 

latter concern is particularly relevant to studies of individual differences in fMRI, in which 

different parameterizations of the model will return different results for the same fMRI 

dataset. Thus, when using individual parameterizations, it is uncertain whether inter-

individual differences in the results are due to differences in brain activity or due to 

differences in the parameterization of the model. The GLM also included 18 regressors for 

cardiac and respiratory phases to correct for physiological noise28 and 6 motion parameters 

regressors to correct for motion-induced noise. In addition to this primary GLM, to test 

whether the BOLD response to outcomes reflected both previous experience with the decks 

and the computer’s numbers, we used an additional GLM with similar regressors but 

including two parametric regressors at gamble outcome onset, one indicating the Q value of 

the current deck as derived from the model, and another one indicating the number drawn 

by the computer, orthogonalizing in turn the two regressors with respect to one another. 

Group-level significance of prediction error GLM coefficients was tested with FWE 

correction for the volume of the striatum, or, when examining BOLD response in a region of 

interest as a whole, by averaging the coefficients extracted from all voxels that comprise the 

region and then using a bootstrap test, Bonferroni-corrected for the number of regions. 

Anatomical regions of interest were identified using MNI coordinates provided with SPM12 

by Neuromorphometrics, Inc. (Somerville, MA, USA) under academic subscription. Statistical 

brain maps were imaged using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/) 

and overlaid on high-resolution anatomical images provided with the software. 

fMRI time course analysis. To assess the time course of the effects of different components 

of the prediction error on the BOLD response to outcomes, we regressed the preprocessed 

BOLD signal (averaged across the functionally defined striatal ROI) for each time point from 

2 s prior to outcome onset to 8 s following outcome onset against the model-derived deck Q 

value and the number drawn by the computer. The BOLD signal was upsampled to 100 Hz to 

allow averaging across trials with disparate fMRI acquisition timings. Both the BOLD signal 
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and the regressors were z-scored. The two regressors were orthogonalized with respect to 

one another. The regression was performed separately for each type of outcome and for 

each functional MRI run (each run corresponded to an experimental block), and regression 

coefficients were averaged across runs.       

fMRI functional connectivity analysis. To examine functional connectivity with striatal and 

amygdala areas in which responses to outcomes were modulated by expectations, we fit a 

GLM that included as regressors the preprocessed BOLD signal from three areas: 1. Striatal 

area where responses to no-shock outcomes were modulated by expectations (p < 0.05 FWE 

small-volume corrected). 2. Amygdala area where responses to shock outcomes were 

modulated by expectations (p < 0.05 FWE small-volume corrected). 3. Average gray matter 

signal. Thus, the coefficients fitted to the first two regressors reflected functional 

connectivity specific to either the striatal or amygdala ROI, accounting for variance shared 

between these regressors as well as with the global gray-matter signal. The GLM also 

included 18 physiological regressors and 6 motion parameters regressors to correct for 

these sources of noise.  

fMRI response to decks. To examine the similarity between the BOLD response to the even 

deck and the BOLD response to the low and high decks, we computed for each participant 

the Euclidean distance between the vector of gray-matter GLM coefficients for the even 

deck and the GLM coefficients for the low (Deven/low) and high (Deven/high) decks. We then 

computed the even deck similarity index as 
Deven/low−Deven/high

Deven/low+Deven/high
. A similarity index of 1 

indicated identity to the high deck and a value of –1 indicated identity to the low deck. 

 Skin conductance analysis. We tested the effect of outcomes on skin conductance using 

SCRalyze (http://scralyze.sourceforge.net), which employs a GLM for event-related evoked 

skin conductance responses29. Skin conductance time series were filtered with a 

bidirectional first order Butterworth band pass filter with cut-off frequencies of 5 and 

0.0159 Hz, and then modeled using the same GLM used for the fMRI analysis.  

Voxel-based morphometry. To compute gray matter density maps, we segmented the MT 

maps into different tissue classes – gray matter, white matter and non-brain voxels 

(cerebrospinal fluid, skull) – and then normalized the tissue maps to MNI space using the 

Dartel algorithm in SPM12 with default settings. Subsequently, the tissue maps were scaled 

by the Jacobian determinants from the final normalization step, so as to preserve the total 

volume of tissue in each structure30, and then smoothed by convolution with an isotropic 

Gaussian kernel of 3 mm FWHM.  

Learning biases prediction. To predict participants’ learning biases (η+ minus η–), we used 

gray matter density data from the 6,315 voxels that comprised the striatum (corresponding 

to the caudate, putamen and accumbens labels in the MNI atlas) as 6,315 predictors in a 

regularized linear regression model. Predictions were generated in a 5-fold cross validation 

scheme, predicting the learning biases of each fifth of the participants using a regression 
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model that was fitted to the rest of the participants31. Regularization was performed using 

the Least Absolute Shrinkage and Selection Operator (LASSO) method32. We used 5 different 

settings of the LASSO shrinkage factor (1, 0.1, 0.01, 0.001, 0.0001) and found that 0.0001 

yielded the highest correlation between predicted and actual values. We corrected for 

multiple comparisons using a permutation test, in which the null distribution was generated 

by permuting the vector of actual learning biases 10,000 times, and applying the same 

procedure described above to predict each permuted vector with each of the 5 shrinkage 

factors while taking the highest correlation coefficient found for each permutation. To 

ensure that predictions did not simply reflect global effects of participant age, sex or whole-

brain gray matter volume, we regressed all variance that could be explained by these 

variables out of the predicted learning biases.  

Statistical analysis. Since many of the variables of interest were not normally distributed, we 

report non-parametric statistics throughout the manuscript. Bias-corrected and accelerated 

bootstrapping33 with 10,000 samples was used to generate 95% confidence intervals and to 

test the significance of differences between two vectors or between a single vector and 

zero. Randomization tests34 with 10,000 permutations were used to test significance of 

correlations. All correlation coefficients denote Spearman rank correlations, except for the 

correlation between predicted and actual learning biases which denotes Pearson linear 

correlation, since learning biases were predicted using a linear regression model. All non-

directional tests are two tailed and all directional tests are one tailed. All data analysis was 

performed using MATLAB (Mathworks, Natick, MA, USA). 
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